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Abstract. Texture segmentation is a difficult problem, just as it is apparent from
camouflage pictures. A textured region can contain clements of several sizes, each of
which can itself be textured. This work presents an algorithm to segment textures.
The algorithm is based on sclf-organizing feature maps which are used to gencrate a
histogram that characterizes the texture. Through classification, the histograms are
compared to each other using signal cross-correlation that operates on a defined win-
dow according to the texture complexity. The algorithm was tested on benchmark im-
ages. The experiments, their results and relevance are presented in the results and fu-
ture work section.

1. Introduction

Texture is generally recognized as being fundamental to perception. The taxonomy of
problems encountered within the context of texture analysis could be that of classifica-
tion, description, and segmentation. Recognition of texture patterns has applications in
radiography and aerial and satellite photography. among others. There is no concise
definition or characterization of a texture available in practice. Texture has been de-
scribed in a variety of ways. Intuitively, texture descriptors provide measures of prop-
erties such as smoothness, coarseness, and regularity. One way to describe texture is to
consider it as being composed of elements of texture primitives. Texture can also be
defined as the mutual relationship among intensity values of neighboring pixels re-
peated over an area larger than the size of the relationship.

Texture segmentation is the problem of breaking an image into components within
which the texture is constant. Texture segmentation involves both representing a tex-
ture, and determining the basis on which segment boundaries are to be determined.

Many texture feature extraction and recognition algorithms are available in practice
(13, 121, [3), [41. [5]. [6]. (7). [8]. [9]). Conventional texture recognition algorithms
can be grouped into three classes: statistical, structural, and spectral. Statistical ap-
proaches yield characterizations of textures as smooth, coarse. grainy, and so forth.
Statistical algorithms are based on the relationship between intensity values of pixels;
measures include entropy, contrast, and correlation based on the gray level co-
occurrence matrix. Structural algorithms are based on image primitives. which they
regard as a formational clement. Structural algorithms generate, and describe rules for
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generating. repeating patterns. The notion of a primitive is central to texture analysis.
A fexel is (loosely) a visual primitive with certain invariant properties. Texels occur
repeatedly in different positions. deformations. or orientations inside a given area.
Texture primitives may be pixels or aggregates of pixels. One way of describing rules
that govern texture is through a grammar. Structural approaches generate patterns by
applying the rules of a grammar to a small number of symbols. Spectral techniques are
based on properties of the Fourier spectrum and are used primarily to detect global
periodicity in the image by identifying high-energy narrow peaks in the spectrum. Both
statistical and structural measures lack neurophysiological support [10].

Many ncural network models have been suggested for texture recognition ([11],
[12]). A generic model for segmenting images by using texture requires the identifica-
tion of those features that both define texture and allow discrimination between differ-
ent textures. A class of 2-D filters based on Gabor functions for the texture segmenta-
tion was proposed [15]. in this approach is shown analytically that applying a properly
configured band-pass filter to a textured image produces distinct output discontinuities
at texture boundaries. Rao and Vemuri proposed a neural network architecture for
texture scgmentation and labeling. Their model consists of two major components: the
feature extraction network and the texture discrimination network. The feature extrac-
tion network is a multilayer hierarchical network governed by Grossberg's boundary
counter (BC) system [13]. The texture discrimination network is based on the adaptive
learning algorithm devised by Kohonen [14]. Neural network models based on FT-
domain feature extraction can also be used for texture feature extraction.

This work this organized in the following way, in the section 2 we analyze the main
characteristics of the SOM neural networks and define the used nomenclature, in the
section 3 the proposed algorithm is described, finally in the section 4 the results are

shown and it is analyzed future work.

2. SOFM neural networks

Self-organizing feature maps (SOFM) [14] learn to classify input vectors according to
how they are grouped in the input space. They differ from another networks in that
neighboring neurons learn to recognize neighboring sections of the input space. Thus,
competitive layers learn both the distributions and topology of the input vectors that
they are trained on.

The architecture for a Self-organizing map network is shown in Fig. 1. The [Ndist|
box in the figure accepts the input vector p and the input weight matrix IW and pro-
duces a vector having S elements. The clements are the negative of the distances be-
tween the input vector p and the vector IW. The net value n of the Self-organizing
layer is computed by finding the negative distance between input vector p and the
weight vector IW.

The competitive transfer function C accepts a net value n and returns neurons out-
puts of 0 for all neurons except for the winner, the neuron associated with the most
positive element of the input . Thus, the winner's output is I.
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Fig. 1. SOM neural network architecture.

The ncurons in the layer of an SOM are arranged originally in physical positions ac-
cording to a topology function, the more used are square grid. hexagonal and random
topology. Distances between neurons are calculated from their positions with a dis-
tance function. The Link distance is the most common.

A sclf-organizing map network identifies a winning neuron " using the same pro-
cedure as employed by a competitive layer, updating not only the winning neuron. but
all neurons within a certain neighborhood N, (4) of the winning neuron using the

Kohonen rule, Specifically, we adjust all such neurons ie N.(d)as follows:

W(@)=,w(g=1)+a(p(g)-,w(g-1)) or M

W@ =(1-a),w(g-1)+ap(q) 2)

Here a is the learning rate and y . (d)contains the indices for all of the neurons
I

that lic within a radius d of the i* winning neuron. Thus, when a vector p is presented,
the weights of the winning neuron and its closest ncighbors move toward p. Conse-
quently, afier many presentations, neighboring neurons will have leamed vectors simi-
lar to each other. The winning neuron's weights are aliered proportional to the learning
rate. The weights of ncurons in its neighborhood are altered proportional to half the
leaming rate. In this work, the learning rate and the neighborhood distance (uscd to

determine which neurons are in the winning neuron's neighborhood) are not altered
during training,
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Here the neighborhood N.(d) contains the indices for all of the ncurons that lie

within a radius d of the winning neuron i* . To illustrate the concept of neighborhoods,

consider Fig. 2.

N,(d)={j.d, <d] 3
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Fig. 2. At left is shown a one-dimensional neighborhood of radius d=1 around neuron
13, at right is shown a neighborhood of radius d=2.

These neighborhoods could be written as: N,3(1)={8,12,l3,14.]8} and
N,3(2)={3,7,8,9,l1,12,13,14,]5,17,18,19,23}.

3. Segmentation algorithm

To carry out the segmentation, it is defined a window of pl x p2 pixels, with the
condition that the window contains in “representative form™ the structure that the
texture defines. With this window the neural net SOM is trained. The neural net
architecture has 3 input that represent the x, y coordinates and the pixel intensity
while the outputs number depend from the complexity of the structure to segment,
although in several experiments were showed to give a good result between 25 and 36
(located in a square arrangement of /1 x k) neurons. Fig. 3 shows the architecture of the
neural net used.

Although the performance of the network is not sensitive to the exact shape of the
neighborhoods with the objective of observing the output layer deformation and its
covering with the data space of the training window the square grid was chosen, using
as distance approach the link distance. The figure 4b shows the deformation presented
at the end of the training considering the window shown in Fig. 4(a).
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Once trained the net, the net has the capacity to order the input space, that is to say
it will learn how to react to repetitive structures found in the window, and considering
the training and operation form of these nets, structures that are similar will make to
react the neighboring neurons. This is if for an input pattern the neuron 3 reacts as the
winner neuron, if a pattern is presented with similar characteristic will react as winner
neuron one of the neighboring neurons of 3.

Fig. 3. The neural net architecture has 3 input that represent the x, y coordinates and
the pixel intensity.

To characterize the texture using the trained neural network we use the histogram
obtained by the net when it is presenting as input the pixels contained in the window.
The histogram will contain the information of how many times each neuron was shot
as a consequence of have been processed the window pixels. The histogram allows to
facilitate the characterization process converting the problem of several dimensions to
an one-dimensional problem. Fig. 5(b) shows the obtained histogram considering as
training window the figure shown in 5(a).

Considering the histogram as the signal that characterizes the texture we can
simply compare this signal with those obtained for the histograms generated by the
versions of the window displaced along the image. Many forms exist of comparing
these signals however the simple way is to accomplish the cross-correlation of both
signals.

In statistics, the term cross-correlation is sometimes used to refer to the
covariance between two random vectors X and Y. In signal processing, the cross-
correlation (or sometimes "cross-covariance”) is a measure of similarity of two
signals, commonly used to find features in an unknown signal by comparing it to a
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1 of the relative time between the signals, is sometimes called

known one. It is a functiol
m recognition and cryptanalysis.

the sliding dot product, and has applications in patte

(a) (b)

Fig. 4. Figure 4(b) shows the deformation presented at the end of the training consider-
ing the window shown in Fig. 4(a).

) )

Fig. 5. Figure 5(b) shows the obtained histogram considering as training window the
figure shown in 5(a).
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For discrete functions f and g, the cross-correlation is defined as
(VAZIED N @)
J

where the sum is over the appropriate values of the integer j and an asterisk indicates

the complex conjugate. For continuous functions f (x) and & (x) the cross-correlation is
defined as

(/*8)™)= [1W0gx+ndi 5)

where the integral is over the appropriate values of 1. The cross-correlation is similar in
nature to the convolution of two functions.

W »

R

@ = B9 e Ny

Fig. 6. In the figure 6b is shown the cross-correlation of windows that correspond to

the same texture presenting a high correlation among both signals, which does not
happen to the signals of the windows histogram of other textures.

In Fig. 6 the histogram obtained in Fi

g. 5 that characterizes o a texture is compared
by cross

-correlation with different windows placed in different textures. In Fig. 6(b) it
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at correspond to the same texture

is shown the cross-corrclation of windows th :
which does not happen to the signals

presenting a high correlation among both signals,
of the windows histogram of other textures. :
The segmentation algorithm of the textures is divided in two parts as .usually ha.ppen

g and operation. During the training

in applications of ncural networks, they are trainin i ing the
for each texture a neural network SOM is trained. The net architecture 1s similar to the

one shown in Fig. 3. Considering the same training window it is oblaingd the
histogram which will be the signal that characterizes the texture. In the operation the
window is displaced by the whole image accomplishing the cross-gom:lauon among
the signals that characterizes the texture and the new histogram obtained as a result of

applying as input to the net the displaced window.

4. Results and future Work

ccture SOM proposed, using

The algorithm was implemented using the neural archit .
d a window of 20 x 20 pixels.

25 output neurons, for the training and operation was usc :
During the training a factor of learning of 0.2 was used and a neighborhood of 5

neurons was considered, what means that the modifications to the network weights are
accomplished not only on the winning neuron, but in those that are in a neighborhood
of 5. It was also used in the training a square grid and as distance approach the link
distance. As discrimination approach the mean of theobtained cross-correlation of
both signals was used being thisy . =210- The training, the correlation and the

image processing was implemented in MATLAB.
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Fig. 7. The figure shows the results obtained when applying the algorithm based on
SOFM neural networks.

The implemented algorithm was applied to an image commonly used as benchmark
for the comparison of segmentation methods, the result is shown in Fig. 7. The result is
good in all homogencous regions of the textures cxcept in the edges where the
algorithm does not allow to discriminate correctly. The Algorithm was proven with
other images presented a good performance however the problem in the edge remains
constant. The worst case is presented in the edge of several textures types (more of 2)
where the window can be classified indistinctly in anyone of them. With the objective
of 10 enlarge the experimental work and to carry out a performance comparison of the
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SOFM algorithm, a segmentation texture algorithm is used based on gabor functions
such as it is described in [15], both algorithms were applied to Fig. 8 (Top), having as
results Fig. 8 (left), for the algorithm based on gabor functions and Fig. 8 (right) for the
SOFM algorithm.

The future work can be concentrated on two directions. First the problem of trying
with the texture edges using an adaptive method that allows to change the window
size and the second is to find a different discrimination method that considers other
characteristic (different to cross-correlation) making in this way perhaps a robuster
classification.

Fig. 8. (Top) Original image, (/efr) segmented image using gabor functions and (right)
segmented image using the SOFM algorithm
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